Biochemical Changes in the Malnourished Rats Serum and Liver Exposed to Dietary Monosodium Glutamate

Main Article Content

Babawande A. Origbemisoye
Badiu A. Akinbode
Ganiyat A. Oparemi

Abstract

Monosodium glutamate (MSG) is a flavor enhancer. Its toxicity in a malnourished state appears not to have been fully investigated. This study was carried out to determine the effects of MSG on malnourished rats. Rats were randomly assigned into four groups of five rats/group. Group 1 rats were fed with malnourished feed; Group 2 rats received malnourished feed with dosed 1.6 mg/g MSG per body weight; Group 3 rats were fed with normal feed and dosed 1.6 mg/g MSG per body weight and Group 4 rats served as the control group (normal healthy rats) and were fed with normal feed for 28 days. After 28 days, the rats were sacrificed with the liver harvested and blood samples collected. Results from the study showed that malnourished rats had significantly lower levels of oxidative stress biomarkers including, anti-oxidants compared with the control. The levels of malondialldehyde concentration and xanthine oxidase activity were high in malnourished fed rats. Aspartate aminotransferase and alanine transaminase levels of malnourished and normal rats administered MSG were significantly low compared to the normal healthy suggesting that labialization occurs in liver leading to leakage of these enzymes from the liver to the serum. Malnourished rats showed significant decrease in body weight losing 48 grams after 28 days compared to malnourished and normal rats fed with MSG which recorded significant increase in body weight after 28 days adding 26 g and 42 g respectively.

Keywords:
Monosodium glutamate (MSG), malnutrition, antioxidant, oxidative stress.

Article Details

How to Cite
Origbemisoye, B. A., Akinbode, B. A., & Oparemi, G. A. (2019). Biochemical Changes in the Malnourished Rats Serum and Liver Exposed to Dietary Monosodium Glutamate. European Journal of Nutrition & Food Safety, 10(2), 156-167. https://doi.org/10.9734/ejnfs/2019/v10i230108
Section
Original Research Article

References

World Health Organization (WHO). Malnutrition. Quantifying the health impact at national and local levels. Geneva: World Health Organization. 2005a;150.

Lacerda EMA, Accioly E, Faria IG, Costa VM. Práticas de Nutrição Pediátrica. São Paulo: Editora Atheneu. 2006;250.

Monteiro CA, Benicio MH, Konno SC, Silva ACF, Lima ALL, Conde WL. Causas do declínio da desnutrição infantil no Brasil, 1996-2007. Rev Saúde Pública. 2009;43(1):35-43.

World Health Organization (WHO). Genebra: Nutrition; 2014.
Available:http://www.who.int/maternal_child_adolescent/topics/child/malnutrition/en/index.html

World Health Organization. Informal consultation to review current literature on severe malnutrition. Geneva: The Organization. In Press. Highlights; 2005b.
Available:www.who.int/hac/about/donorinfo/13September04_MondayHighlights.pdf

Gerude MF, Augusto ALP, Alves DC, Mannarino IC. Terapia Nutricional. São Paulo: Editora Atheneu. 2002;150.

Vismara MR, Furlan MM. Parâmetros biométricos como indicadores do grau de desnutrição em ratos sob restrição alimentar desde o nascimento. Arq Ciênc Vet Zool UNIPAR. 2007;11(1):3-8.

Zamin-Junior I, Mattos AA, Mattos AZ, Migon E, Soares E, Perryy MLS. Modelo experimental de esteatohepatite não-alcoólica com dieta deficiente em metionina e colina. Arq Gastroenterol. 2009;46(1):69-74.

Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology. 1996;111(6):1645-1653.

Fagundes AT, Moura EG, Passos MC, Oliveira E, Toste FP, Bonomo IT, Trevenzoli IH, Garcia RM, Lisboa PC. Maternal low-protein diet during lactation programmes body composition and glucose homeostasis in the adult rat offspring. Brit J Nutr. 2007;98(5):922-928.

Malafaia G, Martins RF, Silva ME. Avaliação dos efeitos, em curto prazo, da deficiência proteica nos parâmetros físicos e bioquímicos de camundongos Swiss. SaBios: Rev Saúde e Biol. 2009;4(2):21-33.

Xavier JG, Favero ME, Vinolo MAR, Rogero MM, Dagli MLZ, Aranha-Chavez VE, Borojevic R, Borelli P. Protein-energy malnutrition alters histological and ultrastructural characteristics of the bone marrow and decreases haematopoiesis in adult mice. Histol Histopathol. 2007;22(6): 651-660.

Borelli P, Blatt S, Pereira J, Maurino BB, Tsujita M, Souza AC, Xavier JG, Fock RA. Reduction of erythroid progenitors in protein-energy malnutrition. Brit J Nutrit Fev. 2007;97(2):307-314.

Pinheiro AR, Salvucci ID, Aguila MB, Mandarim-de-Lacerda CA. Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats. Clin Sci. 2008;114(5):381-392.

Ferrari F, Gabrielli PRM, Mello MAR. Restrição alimentar durante a gestação e suas implicações sobre o binômio mãe/feto. Um modelo experimental utilizando ratas jovens e adultas. Aliment Nutr. 1992;4(1):45-56.

Santos HB, Madruga MS, Bion FM, Antunes NLM, Mendes K, Águida R. Estudos bioquímicos e hematológicos em ratos sobre biodisponibilidade de minerais numa dieta enriquecida com multimistura. Ciênc Tec Aliment. 2004;24(4):613-618.

Estrela DC, Lemes CGC, Guimarães ATB, Malafaia G. Effect of short-term malnutrition in rats. Scientia Plena. 2014;10(7):1-13.

Fürst P, Stehle P. What are the essential elements needed for the determination of amino acid requirements in humans? The Journal of Nutrition. 2004;134(6):1558S-1565S.

Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO. Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian Journal of Biochemistry and Biophysics. 2006;43:20–24.

Leung A, Foster S. Encyclopedia of common natural ingredient used in food. Drugs and Cosmetics, New York. Wiley. 1996;373-375.

Biodun D, Biodun A. A spice or poison? Is monosodium glutamate safe for human consumption? National Concord. 1993;4:5.

Geha RS, Beiser C, Ren R, Patterson L, Grammar A, Ditto M, Harris KE. Review of allergic reaction to monosodium glutamate and outcome of a multicenter double blind placebo-controlled study. Journal of Nutrition. 2001;130:1032S-1038S.

Tawfik MS, Al-Badr N. Adverse effects of monosodium glutamate on liver and kidney functions in adult rats and potential protective effect of vitamins C and E. Food and Nutrition Sciences. 2012;3:651–659.

Legetic B, Campbell N. Reducing salt intake in the Americans: Pan American health organization action. J. Health Comm. 2011;2:37-48.

Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, Morris JN, Rebok GW, Smith DM, Tennstedt SL. Effects of cognitive training interventions with older adults: A randomized controlled trial. J. Am. Med. Assoc. 2002;288:2271–2281.

Akanya HO, Peter S, Ossamulu IF, Oibiokpa FI, Adeyemi HY. Evaluation of the changes in some liver function and haematological parameters in MSG fed rats. International Journal of Biochemistry Research and Review. 2015;6(3):113- 120.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193:265–275.

Roussos GG. Methods Enzymol. 1967;12: 5-16.

Misra HP, Fridovich I. J. Biol Chem. 1972;247:3170-3175.

Varshney R, Kale RK. Int J Rad Biol. 1990;58:733-743.

Beutler E. Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 1989;9:287–302.

Yalta A, Talha. The accuracy of statistical distributions in Microsoft Excel 2007. Comput. Stat. Data Anal. 2008;52:4579-4586.

Insawang T, Selmi C, Cha’on U, Pethlert S, Yongvanit P, Areejitranusorn P, Boonsiri P, Khampitak T, Tangrassameeprasert R, Pinitsoontorn C, Prasongwattana V, Gershwin ME, Hammock BD. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition and Metabolism. 2012;9:50.

Rakgauer M, Neugebauer RJ, Plecko T. The relation between selenium, zinc an copper concentration and the trace element dependent anti-oxidant status. J Trace Elem Med Biol. 2001;15(2-3):73- 8.

Thakur S, Gupta N, Kakkar P. Serum copper and zinc concentration and their relation to superoxide dismutase in severe malnutrition. Eur J Pediatr. 2004;163:742-744.

Taysi S, Cikman O, Kaya A, Demircan B, Gurnustekin K, Yilmaz A, Boyuk A, Keles M, Akyuz M, Turkeli M. Increase oxidant stress and decreased anti-oxidant status in erythrocytes of rats fedd with zinc deficient diet. Biol Trace Elem Res. 2008;123(1-3): 161-167.

Veronika H, Daniela O. Monosodium glutamate toxic effects and their implications for human intake: A review. JMED Research; 2013. Article ID: 608765.
DOI: 10.5171/2013.608765.

Elezaby A, Sverdlov AL, Tu VH, Soni K, Luptak I, Qin F, et al. Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. J. Mol. Cell. Cardiol. 2015;79:275–283.
DOI: 10.1016/j.yjmcc.2014.12.001

Tatli MM, Vural H, Koc A, Kosecik M, Atas A. Altered antioxidant status and increased lipid peroxidation in marasmic children. Pediatr Int. 2000;42(3):289-292.

Oluwajuyitan TD, Ijarotimi OS. Nutritional, antioxidant, glycaemic index and antihyperglycaemic properties of improved traditional plantain-based (Musa ABB), dough meal enriched with Tigernut (Cyperus esculentus) and defatted soybeans (Glycine max) cake for diabetics patients. Heliyon Elsevier. 2019;1504-1509.

Al-Mamary M, Al-Habori M, Al-Aghbari AM, Baker MM. Investigation into the toxicological effects of Catha edulis leaves: A short-term study in animals. Phytoetherapy Research. 2002;16:127-132.
DOI: 10.1002/ptr.835

Poli MA, Templeton CB, Pace JG, Hines HB. Detection, metabolism and pathophysiology of brevetoxin. In: Marine Toxins: Origin, Structure and Molecular Pharmacology. Eds. Hall, S. and strichartz, G., Washington DC: Am. Chem. Soc. 1990;176-191.