A Sustainable Approach to Combat Micronutrient Deficiencies and Ensure Global Food Security through Biofortification

Dipti Rai

Department of Food Technology, CSJM University, Kanpur, India.

Charul Chaudhary *

Department of Home Science, Dayalbagh Educational Institute, Agra, 282005, India.

Aneeta Khatak

Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India.

Sonika Banyal

Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India.

*Author to whom correspondence should be addressed.


Abstract

Micronutrient deficiencies, particularly in essential vitamins and minerals, pose a significant public health challenge, affecting over two billion people worldwide. These deficiencies contribute to various health issues, impaired cognitive development, and reduced productivity, ultimately hindering social and economic progress. Biofortification, a process of enhancing the nutritional content of staple crops through conventional breeding or genetic engineering, has emerged as a promising and sustainable approach to combat micronutrient deficiencies and ensure global food security. This review explores the potential of Biofortification as a cost-effective and sustainable solution to address hidden hunger and improve the nutritional status of vulnerable populations. Biofortification offers several advantages over traditional interventions, such as supplementation and food fortification. By targeting staple crops consumed by the majority of the population, Biofortification ensures a wide reach and sustained nutrient intake without requiring significant changes in dietary habits. Moreover, biofortified crops can be grown locally, reducing the reliance on external interventions and empowering farmers to improve their nutritional status and livelihoods. Numerous studies have demonstrated the efficacy of bio fortified crops in increasing micronutrient intake and improving health outcomes. For instance, iron-biofortified pearl millet has been shown to increase iron absorption and reduce anemia prevalence in children, while zinc-biofortified wheat has improved zinc status and reduced stunting. Additionally, vitamin A-biofortified sweet potato and cassava have significantly increased vitamin A intake and reduced vitamin A deficiency in various populations.

Despite the promising results, the success of Biofortification relies on several factors, including the development of nutrient-dense varieties, consumer acceptance, and effective dissemination strategies. Collaboration among researchers, policymakers, and stakeholders is essential to scale up Biofortification efforts and ensure their long-term sustainability. By prioritizing Biofortification as a key strategy in combating micronutrient deficiencies, we can work towards a more nourished and food-secure world.

Keywords: Biofortification, micronutrient deficiencies, hidden hunger, food security, sustainable nutrition


How to Cite

Rai, D., Chaudhary, C., Khatak, A., & Banyal, S. (2024). A Sustainable Approach to Combat Micronutrient Deficiencies and Ensure Global Food Security through Biofortification. European Journal of Nutrition & Food Safety, 16(4), 15–30. https://doi.org/10.9734/ejnfs/2024/v16i41404

Downloads

Download data is not yet available.

References

Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One. 2013;8(6):e67860.

Bailey RL, West Jr KP, Black RE. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism. 2015;66(Suppl. 2):22-33.

Bouis HE, Saltzman A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 2017;12:49-58.

World Health Organization. Micronutrient deficiencies; 2020. Available:https://www.who.int/nutrition/topics/micronutrients/en/

Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Murray CJ. A systematic analysis of global anemia burden from 1990 to 2010. Blood, The Journal of the American Society of Hematology. 2014;123(5):615-624.

World Health Organization Vitamin A Deficiency; 2020. Available:https://www.who.int/nutrition/topics/vad/en/

Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. The Lancet Diabetes & Endocrinology. 2015;3(4):286-295.

Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PloS One. 2012;7(11):e50568.

Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin. 2011;32(1_suppl1):S31-S40.

Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition. 2018;5:12.

Harvest Plus. Crops; 2020 Available:https://www.harvestplus.org/what-we-do/crops

Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH. Biofortification: progress toward a more nourishing future. Global Food Security. 2013;2(1):9-17.

Bouis, HE. Saltzman A. Improving nutrition through biofortification: A review of evidence from Harvest Plus, 2003 through 2016. Global Food Security. 2017;12:49-58.

Hotz C, Loechl C, de Brauw A, Eozenou P, Gilligan D, Moursi M, Meenakshz JV. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. British Journal of Nutrition. 2012;108(1): 163-176.

Low JW, Mwanga RO, Andrade M, Carey E, Ball AM. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Global Food Security. 2017;14:23-30.

Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Molecular Breeding. 2009;23(2):197-207.

Petry N, Boy E, Wirth JP, Hurrell RF. The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients. 2015;7(2):1144-1173.

Haas JD, Luna SV, Lung'aho MG, Wenger MJ, Murray-Kolb LE, Beebe S, Egli IM. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. The Journal of Nutrition. 2016;146(8):1586-1592.

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000;287(5451):303-305.

Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology. 2005;23(4): 482-487.

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Slamet-Loedin I. H. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):1-13.

Singh S, Hussain S, Anjum MA, Larkin RM. Genetic biofortification of wheat to combat zinc deficiency. Frontiers in Sustainable Food Systems. 2020;4:231.

Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nature Biotechnology. 2007;25(11):1277-1279.

Birol E, Meenakshi JV, Oparinde A, Perez S, Tomlins K. Developing country consumers' acceptance of biofortified foods: A synthesis. Food Security. 2015;7(3):555-568.

Kimenju SC, De Groote H. Consumer willingness to pay for genetically modified food in Kenya. Agricultural Economics. 2008;38(1):35-46.

Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W. Biofortification of staple food crops. The Journal of Nutrition. 2006;136(4):1064-1067.

Haskell MJ. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. The American Journal of Clinical Nutrition. 2012;96(5): 1193S-1203S.

Brinch-Pedersen H, Sørensen LD, Holm PB. Engineering crop plants: Getting a handle on phosphate. Trends in Plant Science. 2002;7(3):118-125.

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Slamet-Loedin I. H. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):1-13.

Beebe S. Common bean breeding in the tropics. Plant Breeding Reviews. 2012;36 (1):357-426.

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000;287(5451), 303-305. Available:https://doi.org/10.1126/science.287.5451.303

Paine JA., Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology. 2005;23(4):482-487. Available:https://doi.org/10.1038/nbt1082

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Slamet-Loedin I. H. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):1-13. Available:https://doi.org/10.1038/srep19792

Singh S, Hussain S, Anjum MA, Larkin RM. Genetic biofortification of wheat to combat zinc deficiency. Frontiers in Sustainable Food Systems. 2020;4:231. Available:https://doi.org/10.3389/fsufs.2020.591419

Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nature Biotechnology. 2007;25(11):1277-1279. Available:https://doi.org/10.1038/nbt1351

Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition. 2018;5:12. Available:https://doi.org/10.3389/fnut.2018.00012

Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. Trends in Plant Science. 2007;12(12):548-555. Available:https://doi.org/10.1016/j.tplants.2007.09.007

Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H, Van Der Straeten D. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology. 2015;33(10):1076-1078. Available:https://doi.org/10.1038/nbt.3358

Adenle AA, Aworh OC, Akromah R, Parayil G. Developing GM super cassava for improved health and food security: Future challenges in Africa. Agriculture & Food Security. 2012;1(1):1-15. Available:https://doi.org/10.1186/2048-7010-1-11

Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Christou, P. The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes & Nutrition. 2013;8(1), 29-41. Available:https://doi.org/10.1007/s12263-012-0315-5

Inaba M, Macer D. Policy, regulation and attitudes towards agricultural biotechnology in Japan. Journal of International Biotechnology Law. 2004;1 (2):45-53. Available:https://doi.org/10.1515/jibl.2004.1.2.45

Bouis HE, Saltzman A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 2017;12:49-58. Available:https://doi.org/10.1016/j.gfs.2017.01.009

Miller DD, Welch RM. Food system strategies for preventing micronutrient malnutrition. Food Policy. 2013;42:115-128. Available:https://doi.org/10.1016/j.foodpol.2013.06.008

Mayer JE, Pfeiffer WH, Beyer P. Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology. 2008;11(2):166-170. Available:https://doi.org/10.1016/j.pbi.2008.01.007

Bhullar NK, Gruissem W. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnology Advances. 2013;31(1):50-57. Available:https://doi.org/10.1016/j.biotechadv.2012.02.001

Hefferon K. Nutritionally enhanced food crops; Progress and perspectives. International Journal of Molecular Sciences. 2015;16(2):3895-3914. Available:https://doi.org/10.3390/ijms16023895

Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science. 2014;59(3):365-372. Available:https://doi.org/10.1016/j.jcs.2013.09.001

Cakmak I, Kutman UB. Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science. 2018;69(1):172-180. Available:https://doi.org/10.1111/ejss.12437

Nuss ET, Tanumihardjo SA. Maize: A paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety. 2010;9(4):417-436. Available:https://doi.org/10.1111/j.1541-4337.2010.00117.x

Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Fan X. Molecular breeding for nutritionally enriched maize: Status and prospects. Frontiers in Genetics. 2020;10:1392. Available:https://doi.org/10.3389/fgene.2019.01392

Montagnac JA, Davis CR, Tanumihardjo SA. Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety. 2009;8 (3):181-194. Available:https://doi.org/10.1111/j.1541-4337.2009.00077.x

Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Zhang P. The Bio Cassava plus program: Biofortification of cassava for sub-Saharan Africa. Annual Review of Plant Biology. 2011;62:251-272. Available:https://doi.org/10.1146/annurev-arplant-042110-103751

Low JW, Mwanga RO, Andrade M, Carey E, Ball AM. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Global Food Security. 2017;14:23-30. Available:https://doi.org/10.1016/j.gfs.2017.01.004

Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin. 2011;32(1_suppl1):S31-S40. Available:https://doi.org/10.1177/15648265110321S105

Yadav OP, Rai KN, Rajpurohit BS, Hash CT, Mahala RS, Gupta SK, Shetty HS. Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. Journal of SAT Agricultural Research. 2016;14:1-7.

Govindaraj M, Rai KN, Cherian B, Pfeiffer WH, Kanatti A, Shivade H. Breeding biofortified pearl millet varieties and hybrids to enhance millet markets for human nutrition. Agriculture. 2019;9(5): 106. Available:https://doi.org/10.3390/agriculture9050106

Finkelstein JL, Mehta S, Udipi A, Ghugre PS, Luna SV, Wenger MJ, Haas JD. A randomized trial of iron-biofortified pearl millet in school children in India. The Journal of Nutrition. 2015;145(7):1576-1581. Available:https://doi.org/10.3945/jn.114.208009

Velu G, Crespo Herrera L, Guzman C, Huerta J, Singh RP. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Frontiers in Plant Science. 2019;9:1971. Available:https://doi.org/10.3389/fpls.2018.01971

Giuliano G. Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology. 2017;44: 169-180. Available:https://doi.org/10.1016/j.copbio.2017.02.001

Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D. Present and future of folate biofortification of crop plants. Journal of Experimental Botany. 2014;65(4):895-906. Available:https://doi.org/10.1093/jxb/ert483

Strobbe S, Van Der Straeten D. Folate biofortification in food crops. Current Opinion in Biotechnology. 2018;50:206-214. Available:https://doi.org/10.1016/j.copbio.2018.01.007

Garcia-Casal MN, Peña-Rosas JP, Giyose B, De Steur H, Van Der Straeten D. Staple crops biofortified with increased vitamins and minerals: Considerations for a public health strategy. Annals of the New York Academy of Sciences. 2017;1390(1):3-13. Available:https://doi.org/10.1111/nyas.13293

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Slamet-Loedin IH. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):1-13. Available:https://doi.org/10.1038/srep19792

Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany. 2004;55(396):353-364. Available:https://doi.org/10.1093/jxb/erh064

Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE. The global hidden hunger indices and maps: An advocacy tool for action. PLoS One. 2013;8(6):e67860. Available:https://doi.org/10.1371/journal.pone.0067860

Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R. QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Science. 2010;50(5): 1742-1750. Available:https://doi.org/10.2135/cropsci2009.10.0589

Hotz C, Loechl C, de Brauw A, Eozenou P, Gilligan D, Moursi M, Munhaua B, Van Jaarsveld P, Carriquiry A, Meenakshi JV. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. British Journal of Nutrition. 2012;108(1):163-176. Available:https://doi.org/10.1017/S0007114511005174

Haas JD, Luna SV, Lung'aho MG, Wenger MJ, Murray-Kolb LE, Beebe S, Gahutu JB, Egli IM. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. The Journal of Nutrition. 2016;146(8):1586-1592. Available:https://doi.org/10.3945/jn.115.224741

Sanou D, Teta IN, Sombié I, Kameli Y, Ouattara S, Zongo U. Zinc status and cognitive performance among school-aged children in Burkina Faso. The Journal of Nutrition. 2018;148(2):228-235. Available:https://doi.org/10.1093/jn/nxx039

Hossain M, Islam Z, Sultana S, Rahman AS, Hotz C, Haque MA, Dhillon CN, Khondker R, Neufeld LM, Kroeun H. Effectiveness of workplace nutrition programs on anemia status among female readymade garment workers in Bangladesh: A program evaluation. Nutrients. 2019;11(6):1259. Available:https://doi.org/10.3390/nu11061259

Haas JD, Rahn M, Venkatramanan S, Marquis GS, Wenger MJ, Murray-Kolb LE. Wesley AS, Reinhart GA. Double-fortified salt is efficacious in improving indicators of iron deficiency in female Indian tea pickers. The Journal of Nutrition. 2014;144(6):957-964. Available:https://doi.org/10.3945/jn.113.183228

Kodkany BS, Bellad RM, Mahantshetti NS, Westcott JE, Krebs NF, Kemp JF, Hambidge KM. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. The Journal of Nutrition. 2013;143(9):1489-1493. Available:https://doi.org/10.3945/jn.113.176677

Palmer AC, Healy K, Barffour MA, Siamusantu W, Chileshe J, Schulze KJ, West KP, Labrique, AB. Provitamin A carotenoid–biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. The Journal of Nutrition. 2016;146(12):2551-2558. Available:https://doi.org/10.3945/jn.116.239202

Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Murray-Kolb LE, Przybyszewski EM, Haas JD. A randomized trial of iron-biofortified pearl millet in school children in India. The Journal of Nutrition. 2015;145(7):1576-1581. Available:https://doi.org/10.3945/jn.114.208009

Sazawal S, Dhingra U, Dhingra P, Dutta A, Deb S, Kumar J, Devi P, Prakash A. Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and prevention of morbidity among preschool children and women - a double masked, randomized, controlled trial. Nutrition Journal. 2018;17(1):86. Available:https://doi.org/10.1186/s12937-018-0391-5

Rothman M, Berti C, Smuts CM, Faber M, Covic N. Acceptability and sensory evaluation of a provitamin A carotenoid-biofortified maize food product among children and caregivers in Zambia. Nutrients. 2020;12(9):2805. Available:https://doi.org/10.3390/nu12092805

Hummel M, Talsma EF, Van der Honing A, Gama AC, Van Vugt D, Brouwer ID, Spillane C. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweet potato varieties among households with children in Malawi. PLoS One. 2018;13 (10):e0204754. Available:https://doi.org/10.1371/journal.pone.0204754

Lien DTK, Nhung BT, Khan NC, Hop LT, Nga NTQ, Hung NT, Kiers J, Shigeru Y, te Biesebeke, R. Impact of milk consumption on performance and health of primary school children in rural Vietnam. Asia Pacific Journal of Clinical Nutrition. 2009; 18(3):326-334. Available:https://pubmed.ncbi.nlm.nih.gov/19786380/

Talsma EF, Brouwer ID, Verhoef H, Mbera GN, Mwangi AM, Demir AY, Maziya-Dixon B, Boy E, Zimmermann MB, Melse-Boonstra A. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. The American Journal of Clinical Nutrition. 2016;103(1): 258-267. Available:https://doi.org/10.3945/ajcn.114.100164

Nana CP, Brouwer ID, Zagré NM, Kok FJ, Traoré AS. Impact of promotion of mango and liver as sources of vitamin A for young children: A pilot study in Burkina Faso. Public Health Nutrition. 2005;8(7):808-813. Available:https://doi.org/10.1079/phn2005777

Huey SL, Venkatramanan S, Udipi SA, Finkelstein JL, Ghugre P, Haas JD, Thakker V, Thorat A, Salvi A, Kurpad AV, Mehta S. Acceptability of iron- and zinc-biofortified pearl millet (ICTP-8203)-based complementary foods among children in an urban slum of Mumbai, India. Frontiers in Nutrition. 2019;6:19. Available:https://doi.org/10.3389/fnut.2019.00019

Campos-Bowers MH, Wittenmyer BF. Biofortification in China: Policy and practice. Health Research Policy and Systems. 2007;5:10. Available:https://doi.org/10.1186/1478-4505-5-10

Abizari AR, Pilime N, Armar-Klemesu M, Brouwer ID. Cowpeas in Northern Ghana and the factors that predict caregivers' intention to give them to schoolchildren. PLoS One. 2013;8(8): e72087. Available:https://doi.org/10.1371/journal.pone.0072087

Lybbert TJ, Sumner DA. Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy. 2012;37(1):114-123. Available:https://doi.org/10.1016/j.foodpol.2011.11.001

Meenakshi JV, Johnson NL, Manyong VM, Degroote H, Gonzalez C, Garcia J. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Development. 2010;38(1):64-75. Available:https://doi.org/10.1016/j.worlddev.2009.03.014

Tumuhimbise GA, Namutebi A, Muyonga JH. Microstructure and in vitro beta carotene bioaccessibility of heat processed orange fleshed sweet potato. Plant Foods for Human Nutrition. 2009;64(4):312-318. Available:https://doi.org/10.1007/s11130-009-0142-z

Islam SN, Nusrat T, Begum P, Ahsan M. Carotenoids and b-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry. 2016;199:628-631. Available:https://doi.org/10.1016/j.foodchem.2015.12.057

Talsma EF, Brouwer ID, Verhoef H, Mbera GN, Mwangi AM, Maziya-Dixon B, Boy E, Zimmermann MB, Melse-Boonstra A. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. The American Journal of Clinical Nutrition. 2016;103(1):258-267. Available:https://doi.org/10.3945/ajcn.114.100164

De Valença AW, Bake A, Brouwer ID, Giller KE. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security. 2017;12:8-14. Available:https://doi.org/10.1016/j.gfs.2016.12.001

Talsma EF, Melse-Boonstra A, de Kok BP, Mbera GN, Mwangi AM, Brouwer ID. Biofortified cassava with pro-vitamin A is sensory and culturally acceptable for consumption by primary school children in Kenya. PLoS One. 2013;8(8): e73433. Available:https://doi.org/10.1371/journal.pone.0073433

Phorbee OO, Olayiwola IO, Sanni SA. Bioavailability of β-carotene in traditional fermented, roasted granules, garri from bio-fortified cassava roots. Food and Nutrition Sciences. 2016;7(8): 625-635. Available:https://doi.org/10.4236/fns.2016.78064

Afolami I, Mwangi MN, Samuel F, Boy E, Ilona P, Talsma EF, Melse-Boonstra A. Daily consumption of pro-vitamin A biofortified (yellow) cassava improves serum retinol concentrations in preschool children in Nigeria: A randomized controlled trial. The American Journal of Clinical Nutrition. 2020;113(1):221-231. Available:https://doi.org/10.1093/ajcn/nqaa290

Hummel M, Talsma EF, Taleon V, Londoño L, Brychkova G, Gallego S, Raatz B, Spillane C. Iron, zinc and phytic acid retention of biofortified, low phytic acid, and conventional bean varieties when preparing common household recipes. Nutrients. 2020;12(3):658. Available:https://doi.org/10.3390/nu12030658

Govender L, Pillay K, Siwela M, Modi AT, Mabhaudhi T. Improving the dietary vitamin A content of rural communities in South Africa by replacing non-biofortified white maize and sweet potato with biofortified maize and sweet potato in traditional dishes. Nutrients. 2016;8(11): 767. Available:https://doi.org/10.3390/nu8110767

Ezeokoli OT, Obadina AO, Sobukola OP, Sanni LO. Sorghum–legume composite flour: A potential source of micronutrients and dietary fibre in biscuits. Journal of Food Science and Technology. 2020;57 (9):3246-3254. Available:https://doi.org/10.1007/s13197-020-04361-1

Palmer AC, Craft NE, Schulze KJ, Barffour M, Chileshe J, Siamusantu W, West KP. Impact of biofortified maize consumption on serum carotenoid concentrations in Zambian children. European Journal of Clinical Nutrition. 2018;72(2):301-303. Available:https://doi.org/10.1038/s41430-017-0054-1

Palmer AC, Healy K, Barffour MA, Siamusantu W, Chileshe J, Schulze KJ, West KP, Labrique, AB. Provitamin A carotenoid–biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. The Journal of Nutrition. 2016;146(12):2551-2558. Available:https://doi.org/10.3945/jn.116.239202

Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH. Biofortification: Progress toward a more nourishing future. Global Food Security. 2013;2(1):9-17. Available:https://doi.org/10.1016/j.gfs.2012.12.003

Zeng H, Cheng WH. Impacts of biofortification on the bioavailability and health effects of zinc and iron. In V. R. Preedy VB. Patel (Eds.), Handbook of nutrition, diet, and the eye (2nd ed., ). Academic Press. 2019;413-423 Available:https://doi.org/10.1016/B978-0-12-815245-4.00031-0

Khush GS, Lee S, Cho JI, Jeon JS. Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports. 2012;6(3):195-202. Available:https://doi.org/10.1007/s11816-012-0216-5