Open Access Grey Literature

Risk Assessment of the Plant Protection Product PROMAN – with the Active Ingredient Metobromuron

Marit Låg, Hubert Dirven, Jan Ludvig Lyche, Asbjørn Magne Nilsen, Katrine Borgå, Ole Martin Eklo, Merete Grung, Line Emilie Sverdrup, Torsten Källqvist

European Journal of Nutrition & Food Safety, Page 56-58
DOI: 10.9734/ejnfs/2019/v11i230139

Proman is a new product containing the active substance metobromuron. The intended use is as a broad spectrum selective herbicide for potatoes grown outdoors.

VKM’s Panel on Plant Protection Products has discussed the questions raised by The Norwegian Food Safety Authority in the Terms of reference and has stated the following opinion:

On the relevance of the carcinogenic effects observed in the rat carcinogenicity study; fibrosarcomas in females and pheochromocytomas and Leydig cell tumours in males:

It is the opinion of VKM’s Panel for Plant Protection Products that the relevance of the observed incidence in mammary gland tumours and Leydig cell tumours in the rat carcinogenicity study is strengthened by the fact that the tumours are observed in hormone responsive tissues. The panel concludes that the carcinogenic effects observed in the rat carcinogenicity study are likely to be relevant for tumours that are influenced by the endocrine system, also in humans.

On the higher incidences of still dumbbell-shaped centres of thoracic vertebrae and nonossification of the 13th rib observed in the rat developmental toxicity study and whether these are considered to be malformations:

VKM’s Panel on Plant Protection Products has discussed the classification of the different types of incomplete ossifications and concluded that incomplete ossification of sternebrae and non-ossification of the 13th rib in rats should by itself be considered to be variations, and not adverse developmental effects. On the other hand, the Panel agrees with ECHA that the “thoracic vertebral centres still dumbbell-shaped” should be considered as malformations, due to limited data and understanding of the mechanism underlying the observed slow reversal of these anomalies. Furthermore, it is the view of the Panel that the different types of retarded ossification induced by the exposure of metobromuron should be considered as a whole when assessing for developmental effects.

On the establishment of the NOAEL for the developmental toxicity study in rats and the reference value (ARfD):

VKM’s Panel on Plant Protection Products supports the proposal of an ADI value of 0.008 mg/kg bw/day based on a NOAEL of 0.8 mg/kg bw/day from the 2-year study in mouse, and VKM Report 2015: 03 5.

AOEL of 0.016 mg/kg bw/day based on the NOAEL of 1.6 mg/kg bw/day from the 1-year feeding study in dog. An UF of 100 is applied. The panel suggests on the other hand an ARfD of 0.03 mg/kg bw based on a LOAEL of 10 mg/kg bw /day with the observations of incomplete ossification in the rat developmental study. An UF of 300 is applied.

On the possible anti-androgenic potential of metobromuron:

It is the view of the Panel that the rat carcinogenicity study suggests that metobromuron may possess endocrine disrupting potency. The data from the Hershberger in vivo rat study and the in vitro studies is also suggestive of a weak anti-androgenic effect. Thus, it is the opinion of the VKM Panel on Plant Protection Products that an anti-androgenic effect of metobromuron cannot be excluded.

Open Access Grey Literature

Environmental Risk Assessment of Glufosinate-Tolerant Genetically Modified Oilseed Rape T45 for Food and Feed Uses, Import and Processing under Regulation (EC) No 1829/2003 (Application EFSA/GMO/UK/2005/25)

Audun Helge Nerland, Per Brandtzæg, Merethe Aasmo Finne, Askild Lorentz Holck, Olavi Junttila, Heidi Sjursen Konestabo, Richard Meadow, Kåre M. Nielsen, Ville Erling Sipinen, Hilde-Gunn Opsahl-Sorteberg, Rose Vikse, Åshild Andreassen

European Journal of Nutrition & Food Safety, Page 59-63
DOI: 10.9734/ejnfs/2019/v11i230140

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The assignment includes a scientific environmental risk assessment of oilseed rape T45 (Reference EFSA/GMO/UK/2005/25) from Bayer CropScience for food and feed uses, import and processing. Oilseed rape T45 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSAs public hearing in 2007 (VKM 2007a).

Food additives produced from T45 oilseed rape were notified in the EU as existing food additives within the meaning of Article 8 (1)(b) of Regulation 1829/2003, authorized under Directive 89/10/EEC (Community Register 2005). Feed materials produced from T45 were also notified as existing feed products containing, consisting of or produced from T45 according to Articles 8 and 20 of Regulation (EC) No 1829/2003 in 2003.  

A notification for placing on the market of T45 according to the Directive 2001/18/EC was submitted in March 2004 (C/GB/04/M5/4), covering import and processing of T45 into food and feed. The application was further transferred into Regulation (EC) No 1829/2003 in November 2005 (EFSA/GMO/UK/2005/25). An application for renewal of authorisation for continued marketing of food additives and feed materials produced from T45 oilseed rape was submitted under Regulation (EC) No 1829/2003 in 2007 (EFSA/GMO/RX/T45). The EFSA GMO Panel performed one single comprehensive risk assessment for all intended uses of genetically modified oilseed rape T45, and issued a comprehensive scientific opinion for both applications submitted under Regulation (EC) No 1829/2003. The scientific opinion was published in January 30 2008 (EFSA 2008), and food and feed products containing or produced from oilseed rape T45 was approved by Commission Decision 26 March 2009 (Commission Decision 2009/184/EC). 

The oilseed rape T45 is however currently being phased out (EU-COM 2009). The commercialisation of T45 oilseed rape seeds in third countries was stopped after the 2005 planting season and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed. The applicant commits not to commercialize the event in the future and the import will therefore be restricted to adventitious levels in oilseed rape commodity. Thus the incidence of oilseed rape T45 in the EU is expected to be limited.

The environmental risk assessment of the oilseed rape T45 is based on information provided by the notifier in the application EFSA/GMO/UK/2005/25 and EFSA/GMO/RX/T45, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.  

The VKM GMO Panel has evaluated T45 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c). 

The scientific risk assessment of oilseed rape T45 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan.

In line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms. 

The glufosinate ammonium-tolerant oilseed rape transformation event T45 (Unique Identfier ACSBNØØ8-2) was developed by Agrobacterium-mediated transformation of protoplast from the conventional oilseed rape cultivar “AC Excel”. T45 contains a synthetic version of the native pat gene isolated from the bacteria Streptomyces viridochromogenes, strain Tü 494. The inserted gene encodes the enzyme phosphinothricin acetyltransferase (PAT), which confers tolerance to the herbical active substance glufosinate ammonium. The PAT enzyme detoxifies glufosinate-ammonium by acetylation of the L-isomer into N-acetyl-L-glufosinate ammonium (NAG) which does not inhibit glutamine synthetase and therefore confers tolerance to the herbicide.

Glufosinate ammonium-tolerant oilseed rape transformation event T45 has been conventionally bred into an array of spring-type oilseed rape varieties.

Molecular characterization:

The molecular characterisation data established that only one copy of the gene cassette is integrated in the oilseed rape genomic DNA. Appropriate analysis of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event T45 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event T45 is inherited as dominant, single locus trait. Phenotypic stability has been confirmed by stable tolerance to the herbicide for T45 lines and varieties derived from the event grown in Canada since 1993. 

Oilseed rape transformation event T45 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2007a).

Comparative assessment:

Based on results from comparative analyses of data from field trials located at representative sites and environments in Canada in 1995-1997, it is concluded that oilseed rape T45 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of maturity and the herbicide tolerance conferred by the PAT protein.  The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event T45 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event T45 compared to conventional oilseed rape.

Environmental risk:

According to the applicant, the event T45 has been phased out, and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed since 2005. However, since future cultivation and import of oilseed rape T45 into the EU/EEA area cannot be entirely ruled out, the environmental risk assessment consider exposure of viable seeds of T45 through accidental spillage into the environment during transportation, storage, handling, processing and use of derived products.

Oilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported. 

Several plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B. juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands.

There is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape T45, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to herbicides with the active substance glufosinate ammonium. Glufosinate ammonium-containing herbicides have been withdrawn from the Norwegian market since 2008, and the substance will be phased out in the EU in 2017 for reasons of reproductive toxicity.

Accidental spillage and loss of viable seeds of T45 during transport, storage, handling in the environment and processing into derived products is, however, likely to take place over time, and the establishment of small populations of oilseed rape T45 cannot be excluded. Feral oilseed rape T45 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populations are immediately adjacent to field crops, and shed seeds from cross-pollinated crop plants could emerge as GM volunteers in subsequent crops. 

However, both the occurrence of feral oilseed rape resulting from seed import spills and the introgression of genetic material from feral oilseed rape populations to wild populations are likely to be low in an import scenario. Apart from the glufosinate tolerance trait, the resulting progeny will not possess a higher fitness and will not be different from progeny arising from cross-fertilisation with conventional oilseed rape varieties. The occurrence of feral oilseed rape resulting from seed import spills and the introgression of genetic material from feral oilseed rape populations to wild populations are likely to be low in an import scenario in Norway. 

Overall conclusion:

Taking into account the expected limited import of oilseed rape T45 (EU COM 2009), the VKM GMO Panel considers that the routes of gene flow from T45 would not introduce significant numbers of transgenic plants into agricultural areas or result in any environmental consequences in Norway. 

The VKM GMO Panel concludes that oilseed rape T45 is unlikely to have any adverse effect on the environment in Norway in the context of its intended usage.

Open Access Grey Literature

Environmental Risk Assessment of Insect Resistant Genetically Modified Maize MON810 for Cultivation, Seed Production, Import, Processing and Feed Uses under Directive 2001/18/EC (Notification C/F/95/12/02)

Audun Helge Nerland, Per Brandtzæg, Merethe Aasmo Finne, Askild Lorentz Holck, Olavi Junttila, Heidi Sjursen Konestabo, Richard Meadow, Kåre M. Nielsen, Ville Erling Sipinen, Hilde-Gunn Opsahl-Sorteberg, Rose Vikse, Åshild Andreassen

European Journal of Nutrition & Food Safety, Page 64-67
DOI: 10.9734/ejnfs/2019/v11i230141

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Directorate requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.

MON810 notification C/F/95/12-02 is approved under Directive 90/220/EEC for cultivation, seed production, import and processing into feeding stuffs and industrial purposes since 22 April 1998 (Commission Decision 98/294/EC). In December 1997, food and food ingredients derived from the progeny of maize line MON810 were notified under Article 5 of Regulation (EC) No 258/97 on novel foods and novel food ingredients. In addition, existing food and feed products containing, consisting of or produced from MON810 were notified according to Articles 8 and 20 of Regulation (EC) No 1829/2003 and were placed in the Community Register in 2005. 

Three applications for renewal of the authorisation for continued marketing of (1) existing food and food ingredients produced from MON810; (2) feed consisting of and/or containing maize MON810, and MON810 for feed use (including cultivation); and (3) food and feed additives, and feed materials produced from maize MON810 within the framework of Regulation (EC) No 1829/2003 were submitted in 2007. 

Maize MON810 has previously been assessed by the VKM GMO Panel commissioned by the Norwegian Directorate for Nature Management in connection with the national finalisation of the procedure of the notification C/F/95/12/02 (VKM 2007a,b). In addition, MON810 has been evaluated by the VKM GMO Panel as a component of several stacked GM maize events (VKM 2005a,b,c, VKM 2007c, VKM 2008, VKM 2009, VKM 2012). Due to the publication of updated guidelines for environmental risk assessments of genetically modified plants and new scientific literature, the VKM GMO Panel has decided to deliver an updated environmental risk assessment of MON810.

The environmental risk assessment of the maize MON810 is based on information provided by the applicant in the notification C/F/95/12/02 and application EFSA/GMO/RX/MON810, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.  

The VKM GMO Panel has evaluated MON810 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c). 

The scientific risk assessment of maize MON810 include molecular characterisation of the inserted DNA and expression of the target protein, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes and evaluations of the post-market environmental plan.

In line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms. 

The genetically modified maize MON810 was developed to provide protection against certain lepidopteran target pests, including European corn borer (Ostrinia nubilalis) and species belonging to the genus Sesamia. Protection is achieved through expression in the plant of the insecticidal Cry protein, Cry1Ab, derived from Bacillus thuringiensis ssp. kurstaki, a common soil bacterium.  

Molecular characterisation Appropriate analysis of the integration site including flanking sequences and bioinformatics analyses have been performed to analyse the construct integrated in the GM plant. Updated bioinformatics analyses revealed that one ORF shared sequence similarity to a putative HECT-ubiquitin ligase protein. 

The VKM GMO Panel found no safety implications from the interruption of this gene sequence. Analyses of leaf, grains, whole plant tissue and pollen from the maize MON 810 demonstrated that the Cry1Ab protein is expressed at very low levels in all tissues tested and constitutes less than 0.001% of the fresh weight in each tissue. The cry1Ab gene is the only transgene expressed in line MON 810 and was expressed highest in the leaves. The stability of the genetic modification has been demonstrated over several generations.

Event MON810 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2007a,b).

Comparative assessment:

Comparative analyses of data from field trials located at representative sites and environments in the USA and Europe indicate that maize MON810 is agronomically and phenotypically equivalent to the conventional counterpart and commercially available reference varieties, with the exception of the lepidopteran-protection trait, conferred by the expression of the Cry1Ab protein. The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of MON810 compared to conventional maize. Evaluations of ecological interactions between maize MON810 and the biotic and abiotic environment indicate no unintended effects of the introduced trait on agronomic and phenotypic characteristics.

Environmental risk:

There are no reports of the target lepidopteran species attaining pest status on maize in Norway. Since there are no Bt-based insecticides approved for use in Norway, and lepidopteran pests have not been registered in maize, issues related to resistance evolution in target pests are not relevant at present for Norwegian agriculture.

Published scientific studies show no or negligible adverse effects of Cry1Ab protein on non-target arthropods that live on or in the vicinity of maize plants. Cultivation of maize MON810 is not considered to represent a threat to the prevalence of red-listed species in Norway.

Few studies have been published examining potential effects of Cry1Ab toxin on ecosystems in soil, mineralization, nutrient turnover and soil communities. Some field studies have indicated that root exudates and decaying plant material containing Cry proteins may affect population size and activity of rhizosphere organisms (soil protozoa and microorganisms). Most studies conclude that effects on soil microorganisms and microbial communities are transient and minor compared to effects caused by agronomic and environmental factors. However, data are only available from short term experiments and predictions of potential long term effects are difficult to deduce.

Few studies have assessed the impact of Cry proteins on non-target aquatic arthropods and the fate of these proteins in senescent and decaying maize detritus in aquatic environments. However, exposure of non-target organisms to Cry proteins in aquatic ecosystems is likely to be very low, and potential exposure of Bt toxins to non-target organisms in aquatic ecosystems in Norway is considered to be negligible. 

Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation with which maize can hybridise and form backcross progeny. Vertical gene transfer in maize therefore depends on cross-pollination with other conventional or organic maize varieties. In addition, unintended admixture of genetically modified material in seeds represents a possible way for gene flow between different crop cultivations. The risk of pollen flow from maize volunteers is negligible under Norwegian growing conditions. 

In addition to the data presented by the applicant, the VKM GMO Panel is not aware of any scientific report of increased establishment and spread of maize MON810 and any change in survival (including over-wintering), persistence and invasiveness capacity. Because the general characteristics of maize MON810 are unchanged, insect resistance are not likely to provide a selective advantage outside cultivation in Norway. 

Since MON810 has no altered agronomic and phenotypic characteristics, except for the specific target pest resistance, the VKM GMO Panel is of the opinion that the likelihood of unintended environmental effects due to the establishment and survival of maize MON810 will be no different to that of conventional maize varieties in Norway.

Overall conclusion:

The VKM GMO Panel concludes that cultivation of maize MON810 is unlikely to have any adverse effect on the environment in Norway.

Open Access Grey Literature

Preliminary Environmental Risk Assessment of Genetically Modified Oilseed Rape MON 88302 for Food and Feed Uses, Import and Processing under Regulation (EC) No 1829/2003 (Application EFSA/GMO/BE/2011/101)

Audun Helge Nerland, Per Brandtzæg, Merethe Aasmo Finne, Askild Lorentz Holck, Olavi Junttila, Heidi Sjursen Konestabo, Richard Meadow, Kåre M. Nielsen, Hilde-Gunn Opsahl-Sorteberg, Åshild Andreassen

European Journal of Nutrition & Food Safety, Page 68-71
DOI: 10.9734/ejnfs/2019/v11i230142

The environmental risk assessment of the herbicide tolerant genetically modified oilseed rape MON 88302 (Reference EFSA/GMO/BE/2011/101) has been performed by the Panel on Genetically Modified Organisms (GMO) of the Norwegian Scientific Committee for Food Safety (VKM). VKM has been requested by the Norwegian Directorate for Nature Management and the Norwegian Food Safety Authority to issue a preliminary scientific opinion on the safety of the genetically modified oilseed rape MON 88302 (Unique identifier MON-88Ø2-9) for food and feed uses, import and processing, and submit relevant scientific comments or questions to EFSA on the application EFSA/GMOBE/2011/101. 

The environmental risk assessment of the MON 88302 is based on information provided by the applicant in the application EFSA/GMO/BE/2011/101, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered peer-reviewed scientific literature as relevant.  

The VKM GMO Panel has evaluated MON 88302 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c). 

The scientific risk assessment of oilseed rape MON 88302 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan.

In line with its mandate, VKM emphasized that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms. The GMO Panel has therefore not considered possible health and environmental effects of cultivation and processing of oilseed rape MON 88302 outside the EU/EEA area.

The genetically modified oilseed rape MON 88302 was developed to provide tolerance to the herbical active substance glyphosate by the introduction of a gene coding for the enzyme 5enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium tumefaciens, strain CP4 (CP4 EPSPS). Glyphosate is a non-selective herbicide and is normally phytotoxic to a broad range of plants. Its mode of action occurs by binding to and inactivating the EPSPS protein, which is a key enzyme in the shikimate pathway that leads to the biosynthesis of the aromatic amino acids tyrosine, tryptophan and phenylalanine. The disruption of this pathway and the resulting inability to produce key amino acids prevents growth and ultimately leads to plant death. 

Molecular characterization:

The VKM Panel on Genetically Modified Organisms find the conclusion that no major section of the T-DNA plasmid backbone is inserted in MON88302 oilseed rape justified. We also find it justified that there is only one major T-DNA insert in MON88302. 

Comparative assessment:

Based on results from comparative analyses of data from field trials located at representative sites and environments in the USA, Canada and Chile, it is concluded that oilseed rape MON 88302 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of the herbicide tolerance conferred by the CP4 EPSPS protein. The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of MON 88302 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glyphosate herbicide do not alter the phenotypic and agronomic characteristics of MON 88302 compared to conventional oilseed rape.

Evaluations of environmental interactions between genetically modified oilseed rape MON 88302 and the biotic and abiotic environment, and studies of seed dormancy, seed germination, pollen morphology and viability indicates no unintended effects of the introduced trait on these characteristics in MON 88302 oilseed rape. 

Environmental risk:

Considering the scope of the application EFSA/GMO/BE/2011/101, excluding cultivation purposes, the environmental risk assessment is limited to exposure through accidental spillage of viable seeds of MON 88302 into the environment during transportation, storage, handling, processing and use of derived products.

Oilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30 %, but outcrossing frequencies up to 55 % are reported. 

Several plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B.juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands.

There is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape MON 88302, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to glyphosate-containing herbicides.

However, accidental spillage and loss of viable seeds of MON 88302 during transport, storage, handling in the environment and processing into derived products is likely to take place over time, and the establishment of small populations of oilseed rape MON 88302 on locations where glyphosate is frequently applied to control weeds e.g. on railway tracks, cannot be excluded. Feral oilseed rape MON 88302 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populations are immediately adjacent to field crops, and shed seeds from cross-pollinated crop plants could emerge as GM volunteers in subsequent crops. However, both the occurrence of feral oilseed rape resulting from seed import spills and the introgression of genetic material from feral oilseed rape populations to wild populations are likely to be low in an import scenario. Apart from the glyphosate tolerance trait, the resulting progeny will not possess a higher fitness and will not be different from progeny arising from cross-fertilisation with conventional oilseed rape varieties.

The VKM GMO Panel concludes that this route of gene flow would not introduce significant numbers of transgenic plants into agricultural areas or result in any environmental consequences in Norway.

The environmental risk assessment will be completed and finalized by the VKM Panel on Genetically Modified Organisms when requested additional information from the applicant is available.

Open Access Grey Literature

Risk Assessment of Coumarin Intake in the Norwegian Population

Inger-Lise Steffensen, Jan Alexander, Mona-Lise Binderup, Knut Helkåas Dahl, Berit Granum, Ragna Bogen Hetland, Trine Husøy, Jan Erik Paulsen, Tore Sanner, Vibeke Thrane

European Journal of Nutrition & Food Safety, Page 72-75
DOI: 10.9734/ejnfs/2019/v11i230143

The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) has at the request of the Norwegian Food Safety Authority (Mattilsynet) conducted a risk assessment of the coumarin intake in the Norwegian population. VKM was asked to assess if any part of the population has a total intake of coumarin that will exceed the tolerable daily intake (TDI). It should further be considered whether an intake of coumarin exceeding TDI 1-2 times a week for several years would represent a risk to the health of the consumer.

The assessment has been performed by the VKM Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics (Panel 4).

Coumarin is a naturally flavouring substance in cinnamon and occurs in many plants. The substance can be found in different types of cinnamon to a varying degree. The two main types are Ceylon (Cinnamomum zeylandicum) and Cassia cinnamon (Cinnamomum aromaticum). Cassia cinnamon, which currently is most frequently used in food products on the Norwegian market, contains more coumarin than the lesser used Ceylon cinnamon.

Oral intake of coumarin is mostly related to consumption of cinnamon-containing foods or cinnamon as a spice. This includes both direct addition of cinnamon to foods as well as the use of cinnamon oils and other cinnamon extracts by the food industry. Other important sources of exposure could be food supplements based on cinnamon or the use of cosmetic products through dermal exposure, as synthetic coumarin is added as a fragrance ingredient to perfumes, skin gels, lotions and deodorants.

It is known from animal experiments that coumarin can cause liver toxicity. It is considered as a non-genotoxic carcinogen in mice and rats. In 2004, the European Food Safety Authority (EFSA) established a TDI of 0.1 mg coumarin/kg body weight (bw), based on a no observed adverse effect level (NOAEL) for liver toxicity in a 2-year dog study. This TDI was maintained when the substance was re-evaluated in 2008. EFSA further concluded that exposure to coumarin resulting in an intake 3 times higher than the TDI for 1-2 weeks was not of safety concern.

In order to answer the second question as stated in the terms of reference, the VKM Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics found it necessary to further examine the data on toxicity of coumarin, which were the basis for the TDI established by EFSA. The most significant hazards of coumarin appears to be liver toxicity, which is well documented, and demonstrated in mice, rats, dogs, baboons and humans, and kidney adenomas in male rats. In a review of human case reports, a small subgroup of the human population appears for unknown reasons to be more susceptible to medical treatment with coumarin. The lowest reported dose of coumarin associated with liver toxicity in humans is around 0.4 mg/kg bw/day. It should be noted that the liver toxicity of coumarin in humans usually is reversible. Since there were no dose-response data for humans, animal data were used in the hazard characterisation.

The VKM Panel decided to use the benchmark dose (BMD) approach to determine a point of departure for adverse effects of coumarin. The 2-year chronic toxicity/carcinogenicity study in rats by the US National Toxicology Program (NTP) was chosen for model simulation and BMD/BMDL (benchmark dose lower confidence limit) calculations. The best model fit of the dose-response data combined with the lowest BMDL05 (dose where the response is likely to be smaller than 5%) was seen for increased relative liver weight in female rats, which gave a BMDL05 of 7 mg/kg bw/day (converted from 10 mg/kg bw, 5 times per week).

The VKM Panel used the BMDL05 for relative increase in liver weight in female rats to establish a TDI of 0.07 mg/kg bw/day using an uncertainty factor of 100 to account for interand intraspecies variation.

The intake calculations for coumarin from food and drinks in this opinion are based on both data from the nationally representative food consumption surveys Norkost, Ungkost, Småbarnskost and Spedkost, as well as on assumed worst intake scenarios of different cinnamon-containing food products. The average coumarin levels found in cinnamoncontaining food categories such as ginger bread, cinnamon buns and similar bakery products, cinnamon-containing cakes, thin pastry with cinnamon and cinnamon-based tea sold on the Norwegian market, were used to calculate the total coumarin intake in different age groups in the population. For the calculation of the coumarin intake from cinnamon powder sprinkled on oatmeal porridge and rice porridge, a coumarin level of 3000 mg/kg in cinnamon powder was used. The frequency of consumption and the amount of cinnamon powder (from ¼ - 1 teaspoon) sprinkled on the porridge were taken into account in the calculations.

To assess if any part of the Norwegian population has an intake of coumarin that will exceed the TDI, the different intake scenarios presented in the opinion have been compared with the TDI of 0.07 mg/kg bw/day established by VKM. The main conclusions from the VKM Panel were:

The total estimated intake of coumarin for mean and high consumers of cinnamon-containing foods are below the TDI for all age groups when consumption of cinnamon-based tea and porridge with cinnamon was excluded.

Children and adults who regularly consume oatmeal porridge sprinkled with cinnamon may exceed the TDI by several folds depending on the frequency of consumption and the amount of cinnamon used.

Small children (1- and 2-years old) who have a mean or high consumption of oatmeal porridge may exceed the TDI even if they use moderate amounts of cinnamon powder on the porridge. In a worst case scenario with high consumption of porridge and use of high amounts of cinnamon powder, the estimated coumarin intake could exceed the TDI by about 20-fold.

This intake is similar to dose levels of coumarin used in medical treatment of adults and where cases of liver toxicity have been reported.

Drinking of cinnamon-based tea, which may have a high content of coumarin, can also result in a total intake of coumarin that exceeds the TDI both for children and adults.

Other relevant sources of coumarin are cosmetics and food supplements with cinnamon. The recommended dose of two cinnamon supplements sold on the Norwegian market can lead to an exceedance of TDI in adults. It is not anticipated that children will consume supplements with cinnamon. Cosmetic products (shower gels, body lotions, deodorants and oils) are important sources of coumarin exposure both for children and adults, but quantification of the coumarin exposure from cosmetics was not possible due to lack of data.

The VKM Panel concludes that based on the available data, the possibility of an adverse health effect by exceeding the TDI 3-fold for 1-2 times per week for several years cannot be assessed. Generally, a minor or an occasional exceedance of TDI is not considered to increase the risk of adverse health effects.

The coumarin intake could exceed the TDI by 7-20 fold in some instances. Liver toxicity may occur shortly after the start of coumarin exposure. Such large daily exceedances of TDI, even for a limited time period of 1-2 weeks, cause concern of adverse health effects.

Open Access Original Research Article

Food Information Requirements of the Indian Consumers

Sarthak Ghimire, V. Kamalvanshi, D. S. Bunkar, Rajan Kumar

European Journal of Nutrition & Food Safety, Page 76-82
DOI: 10.9734/ejnfs/2019/v11i230144

Because of increase in the complexity of the food supply chain, there is information asymmetry in the food industry. But, in other hand, due to increase in concern over health, sustainability, local production, genetically modified crops and welfare issues, there is increase in concern of consumers regarding food information. Similarly, food information has direct implication to food safety. Although nutritional labelling is common in India, there exist knowledge gap about the actual informational need of the Indian consumers regarding the food they are consuming. This paper using the primary data collected through the structured web questionnaire tries to explore what information are required by the Indian consumers regarding the food and calculates their average willingness to pay for food with higher information. Survey was conducted in the month of March-April, 2019. A total of 514 valid responses were considered in the study. It was found that maximum number of consumers are willing to know more about chemical used at any stage, followed by production and marketing information and dietary health restrictions, respectively. It is found that Indian consumers at an average willing to pay 11.06% more for food with higher level of food information, than ordinary food. This research is valuable for future research on food information and various authorities to make policies regarding food information.

Open Access Original Research Article

Types and Classification of Pesticides Used on Tomatoes Grown in Mwea Irrigation Scheme, Kirinyaga County, Kenya

Momanyi, Violet Nakhungu, N. Keraka, Margaret, A. Abong’o, Deborah, N. Warutere, Peterson

European Journal of Nutrition & Food Safety, Page 83-97
DOI: 10.9734/ejnfs/2019/v11i230145

This study evaluated 403 farmers from the open field and greenhouse farms in Mwea Irrigation Scheme on the types and classification of pesticides used to control pests and diseases on tomatoes, in July 2017 to June 2018. Five greenhouse tomato farmers were purposively selected while sample size of 196 open field farmers, calculated using Fisher’s formula. Cross-Sectional design using a structured questionnaire, face to face interviews and focus group discussions with 201 farmers in the eight wards, Gathingiri, Tebere, Kangai, Wamumu, Murinduko, Nyangati, Mutithi and Thiba. Accuracy of the data was ensured by pre-testing the questionnaire on tomato farmers from a neighbouring Maragua sub-county, errors were corrected, and omissions added to the questionnaire. Descriptive statistics was carried out for frequencies, percentages, means, standard errors, variance and data subjected to T-test at 95% Confidence Interval to determine significant differences between variables. Results from the interviews revealed that farmers applied 57 and 12 pesticides under different trade names on tomatoes in the open field and greenhouse farms respectively. Pyrethroids, carbamates, nicotinoids, organophosphates, and organochlorines were applied on tomatoes among others. The 20 and 12 pesticides mainly used in open field and greenhouse farms were WHO Class II (60%) and WHO Class III (42%), respectively. Farmers heavily relied on different types of pesticides to control a wide range of major pests and diseases as Tuta absoluta and blight respectively. Chlorantraniliprole and mancozeb are the main pesticides used in tomatoes. Most pesticides, WHO toxic class II including pyrethroids and carbamates should be used following manufacturers’ recommendations to prevent human health risks. Training and awareness by the Ministry of agriculture, Kirinyanga County government  are needed on use of less toxic pesticides equally effective in controlling pests and diseases, such as WHO  classes III and IV and bio-pesticides with minimal negative effects on human  health.

Open Access Original Research Article

Comparative Antibacterial Analysis and Synergistic Potency of the Leaf Extracts of Ocimum gratissimum Linn. and Gongronema latifolium Benth. on Some Enteric Bacterial Isolates

D. A. Awomukwu, C. K. Anumudu, A. J. Ogbolosingha

European Journal of Nutrition & Food Safety, Page 98-107
DOI: 10.9734/ejnfs/2019/v11i230146

The research was undertaken to investigate the comparative phytochemical and in-vitro antibacterial activity of the single and combined strengths of the leaf extracts of Ocimum gratissimum Linn and Gongronema latifolium Benth. on some enteric bacterial isolates. The sensitivity test and minimum inhibitory concentration (MIC) were carried out using a modified agar-well diffusion method.  The enteric bacterial isolates tested included Escherichia coli, Shigella dysenteriae, Salmonella Typhi and Enterobacter aerogenes.  Standard methods were applied to obtain the ethanol and aqueous leaf extracts. The ethanol extracts of O. gratissimum and G. latifolium produced highly significant inhibitory activity against all the enteric bacterial isolates tested.  Comparatively, the ethanol plant extracts were more potent than the commercially available drug, Ciprofloxacin and the aqueous plant extracts. The isolates were sensitive at a minimum inhibitory concentration of 1.25 mg/ml for the ethanol extract but varied from 2.5 mg/ml - 5.0mg/ml in the aqueous extract.  It was also observed that the synergistic antibacterial effect of the medicinal plant extracts was greater than the singular antibacterial effect of the individual plant extracts in both the ethanol and aqueous extracts. The potency of the individual extracts and the combined effect may be due to the presence of flavonoids, alkaloids, phenols, tannins and saponins in the leaves of the plants.  This study partly validates the use of the plant extracts in the treatment of disease caused by the enteric bacterial isolates by multiple traditional medicine practitioners in Nigeria, however, strict adherence to dosage is recommended.  The leaf extract is a potential source of the new drug if the components are purified and enhanced for treating infections caused by these enteric pathogens.